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Thermal diffusion by stochastic electromagnetic fluctuations

06/03/13 NIFS N.Nakajima

Background

1. In experiments, electrostatic and magnetic fluctuations usually coexist. Under their

simultaneous influences electrons and ions will diffuse.

electrostatic fluctuations : ITG

magnetic fluctuations : equilibrium,

instabilities

2. In simulations, gyrokinetic self-consistent electromagnetic turbulence simulations in

systems with electrons and ions are quite difficult (at least 5 years later)

Purposes

To develop a new simple method to evaluate the thermal diffusion by coexisting

stochastic electrostatic and magnetic fluctuations, where

1. both electrostatic and magnetic fluctuations are treated in the same framework,

2. analytical expression of the diffusion coefficient is obtained,

3. intuitive interpretation of the diffusion in experiments and simulations is given.
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Object

turbulent level ⇒ depends on configuration

diffusion level ⇒ depends on turbulent level

1. geometry:

A large aspect straight helical or tokamak system with low-β and small gyro-radii

only passing particles considered (Trapped particles can be treated in terms of

action-angle variables)

2. fluctuations:

given coexisting homogeneous stochastic electrostatic and magnetic fluctuations

statistical properties of fluctuations:

Gaussian with a finite correlation time and no mean value

Contents

1. derivation of mono-energetic diffusion coefficient

Drift Kinetic Deterministic Equations is regarded as Stochastic Differential Equations

(SDE) by stochastic instability of orbits

renomalization of Lagrangian auto-correlation function by using perturbed orbits

realization of the stochastic instability by replacing discrete parallel wave number

by continuous parallel wave number (based on J.A.Krommes)

2. thermal diffusion coefficients of electrons and ions (velocity space integration)

3. future works
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1 Derivation of mono-energetic diffusion coefficient

1.1 Drift Kinetic Deterministic Equations is regarded as Stochastic Differential Equa-

tions (SDE) by stochastic instability of orbits

Drift Kinetic Deterministic Equations (by Little John)

~v = v||
~B + δ ~B +∇× (ρ|| ~B)

B + δB|| + ρ||J||
, n̂ ≡

~B

B
, ρ|| ≡

v||
Ω

, Ω ≡ eB

m
, δ ~B = ∇× δ ~A, δ ~A = α~B = δA||n̂.

In a large aspect helical or tokamak system with low-β, small gyro-radii, and a model

field B = B[1− εt cos θ − εh cos(Lθ −Mζ)]

assuming
δBr

B
À ρ

R
and

δEθ

vB
À ρ

R
(toroidal drifts by ∇B and ~κ are neglected)

dr

dt
∼ v||

1

rB

∂δA||
∂θ

− 1

rB

∂δφ

∂θ︸ ︷︷ ︸
part due to fluctuations

,

dθ

dt
∼ v||

ί́

R
− ωE×B︸ ︷︷ ︸

part without fluctuations

− v||
1

rB

∂δA||
∂r

+
1

rB

∂δφ

∂r︸ ︷︷ ︸
part due to fluctuations

,

dζ

dt
∼ v||

1

R
.

parts due to fluctuations ⇒ stochastic parts

Slow particles mainly contribute to diffusion by fluctuations, fast ones mainly does to

neoclassical diffusion, if collisions exist.(partition of velocity space)
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Stochastic Differential Equations (SDE) by the stochastic instability of orbits

dr

dt
∼ g̃r(~r(t), t)︸ ︷︷ ︸

stochastic part

,

dθ

dt
∼ v||

ί́

R
− ωE×B︸ ︷︷ ︸

deterministic part

− g̃θ(~r(t), t)︸ ︷︷ ︸
stochastic part

,

dζ

dt
∼ v||

1

R
,

where statistical properties of g̃r(~r(t), t) and g̃θ(~r(t), t) are assumed to be Gaussian with

no mean value

g̃r(~r(t), t) ≡ v||
1

rB

∂δA||
∂θ

− 1

rB

∂δφ

∂θ
, δA|| =

∑
mn δA||mn(r) cos

[
nζ −mθ + δ

(δA)
mn − ω

(δA)
mn t

]
,

g̃θ(~r(t), t) ≡ v||
1

rB

∂δA||
∂r

− 1

rB

∂δφ

∂r
, δφ =

∑
mn δφmn(r) cos

[
nζ −mθ + δ

(δφ)
mn − ω

(δφ)
mn t

]
.

simplification by locality of the radial diffusion

dr

dt
∼ g̃r(r = r(t0), θ(t), ζ(t), t)︸ ︷︷ ︸

stochastic part

,

dθ

dt
∼

[
v||

ί́

R
− ωE×B

]
r=r(t0)︸ ︷︷ ︸

deterministic part

− g̃θ(r = r(t0), θ(t), ζ(t), t)︸ ︷︷ ︸
stochastic part

,

dζ

dt
∼ v||

1

R
,



US/Japan JIFT-WS 5

1.2 The formal solution of SDE

r(t) = r(t0) +

∫ t

t0

dτ g̃r(r = r(t0), θ(τ ), ζ(τ ), τ )

︸ ︷︷ ︸
perturbed orbits

,

θ(t) = θ(t0) +
[
v||

ί́

R
− ωE×B

]
r(t)=r(t0)

(t− t0) +

∫ t

t0

dτ g̃θ(r = r(t0), θ(τ ), ζ(τ ), τ )

︸ ︷︷ ︸
perturbed orbits

,

ζ(t) = ζ(t0) + v||
1

R
(t− t0).

1.3 Renormalized mono-energetic diffusion coefficient at r = r0

Dθ(t, t0) =
1

2

d

dt

〈
(θ(t)− 〈θ(t)〉)2

〉
=

1

2

d

dt

〈[∫ t

t0

dτ

[
dθ(τ )

dτ
−

〈
dθ(τ )

dτ

〉]]2
〉

=

∫ t

t0

dτ 〈g̃θ(r = r(t0), θ(t), ζ(t), t)g̃θ(r = r(t0), θ(τ ), ζ(τ ), τ )〉 =

∫ t

t0

dτRθ(t, τ ) = Fθ [Dθ(t, t0)]

unperturbed orbits of θ(t) in g̃θ ⇒ quasi-linear diffusion of Dθ(t, t0)

perturbed orbits of θ(t) in g̃θ ⇒ renormalized diffusion of Dθ(t, t0)
Rθ(t, τ ) : Lagrangian auto-correlation function of the velocity

After obtaining Dθ(t, t0), Dr(t, t0) is obtained.
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1.4 Treatment of stochastic parts

By substituting the solution of SDE into Rθ(t, τ ), an ensemble average appears:

〈
e±iξ

〉
, ξ ≡ a

∫ t

t0

dt1g̃θ(r = r(t0), θ(t1), ζ(t1), t1) + b

∫ τ

t0

dt2g̃θ(r = r(t0), θ(t2), ζ(t2), t2)

By using cumulant Cl expansion and Gaussianity with no mean value : Cl=1 = Cl≥3 = 0:

〈
e±iξ

〉
= exp

{ ∞∑

l=1

(±i)l

l
Cl

}
= e

−
1

2

〈
ξ2

〉

〈
ξ2

〉
= a2

∫ t

t0

dt1

∫ t

t0

dt′1Rθ(t1, t
′
1) + b2

∫ τ

t0

dt1

∫ τ

t0

dt′1Rθ(t1, t
′
1) + 2ab

∫ t

t0

dt1

∫ τ

t0

dt′1Rθ(t1, t
′
1),

Long term limit, Rθ(t, τ ) becomes stationary with a finite correlation time τ θ
ac:

Rθ(t, τ ) ∼ Rθ(t− τ ) ∼ Dθ

τ θ
ac

exp{−t− τ

τ θ
ac

}, τ θ
ac ∼

1

m2Dθ
,

For t− τ À τ θ
ac,

1

2

〈
ξ2

〉
= a2(t− t0) + (2ab + b2)(τ − t0)

〈
e±iξ

〉
= exp

{− [
a2(t− t0) + (2ab + b2)(τ − t0)

]}
.

By time integration and picking up the non-damping terms,

1. only Fourier modes with m′ = m and n′ = n remain in
∑

mn

∑
m′n′,

2. the dependence on the initial conditions vanishes.
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1.5 Renormalized mono-energetic diffusion coefficient in the long term limit

Dθ = lim
t−t0 À τθ

ac

∫ t

t0

dτRθ(t− τ )

∼ 1

2

∑
mn

[
v||

1

rB

∂δA||mn

∂r

]2
m2Dθ[

k||v|| + mωE×B − ω
(δA)
mn

]2

+
[
m2Dθ

]2

︸ ︷︷ ︸
renormalized part

+
1

2

∑
mn

[
1

rB

∂δφmn

∂r

]2
m2Dθ[

k||v|| + mωE×B − ω
(δφ)
mn

]2

+
[
m2Dθ

]2

︸ ︷︷ ︸
renormalized part

, where k|| =
n−mί́

R
.

Dr ∼
(

rkθ

kr

)2

Dθ, kr ∼ 1

δA||mn

∂δA||mn

∂r
∼ 1

δφ||mn

∂δφ||mn

∂r
, rkθ ∼ m.

with typical value of Q expressed by Q

1. The velocity dependence is different between magnetic and electrostatic fluctua-

tions (coming from the equation of motion).

2. Connection between Dr and Dθ is difficult when k
(δA)

r is completely different from

k
(δφ)

r . Hereafter, the spectrum of δA|| is assumed to be fairly similar to δφ.
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1.6 Realization of the stochastic instability

1. Stochastic instability of orbits is brought by influences of simultaneous multiple

waves on orbits. Particles feel infinite number of waves along perturbed orbits.

2. To express this situation, the finite summation of the discrete parallel wave number is replaced

by the integration of the continuous parallel wave number (based on J.A.Krommes)

∑
mn

=
∑

mk||

⇒
∑
m

1

∆k||

∫ δk||max(>0)

δk||min(<0)

dk||

δk||max, δk||min ：the maximum and minimum parallel wave numbers contributing to the

diffusion around (k|| = 0)、except for boundaries of the stochastic region,

−δk||min ∼ δk||max = δk|| =

∣∣∣∣
kθ

krLs

∣∣∣∣ , Ls =
R

ί́|s|, s =
r

q

dq

dr
,

On ∆k|| 〈Q〉 =
1

N

N∑
i=1

Qi ∼

∫
QWdk||

∫
Wdk||

⇒
N∑

i=1

Qi ∼

∫
QWdk||

∫
Wdk||

N

, W : the envelop of k||

∆k|| =

∫ δk||max

δk||min

Wdk||

N
∼ 1

qR
, L|| ≡

2π

∆k||
∼ 2πqR : parallel correlation length.
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The resultant mono-energetic diffusion coefficient:

Dθ =
L||
4π

∑
m

∫ δk||

−δk||
dk||

[
v||

1

rB

∂δA||mk||
∂r

]2
m2Dθ[

k||v|| + mωE×B − ω
(δA)
mk||

]2

+ [m2Dθ]
2

+
L||
4π

∑
m

∫ δk||

−δk||
dk||

[
1

rB

∂δφmk||
∂r

]2
m2Dθ[

k||v|| + mωE×B − ω
(δφ)
mk||

]2

+ [m2Dθ]
2
.

By assuming moderate variations of the amplitude and the frequency:

Dθ ∼ L||
4π

∑
m

〈[
v||

1

rB

∂δA||mk||
∂r

]2〉

k||

∫ δk||

−δk||
dk||

m2Dθ[
k||v|| + mωE×B −

〈
ω

(δA)
mk||

〉
k||

]2

+ [m2Dθ]
2

+
L||
4π

∑
m

〈[
1

rB

∂δφmk||
∂r

]2
〉

k||

∫ δk||

−δk||
dk||

m2Dθ[
k||v|| + mωE×B −

〈
ω

(δφ)
mk||

〉
k||

]2

+ [m2Dθ]
2

where 〈Q〉k|| means the replacement of the k|| dependence by the typical values at the

initial position. Remaining integrations with respect to k|| are analytically integrated.
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The final form of mono-energetic diffusion coefficient:

Dθ(v||, ω̂(δA)
m , ω̂(δφ)

m ) ∼ L||
4π

∑
m

∑
±

〈
v||

[
1

rB

∂δA||mk||
∂r

]2〉

k||

Tan−1

[
δk||v|| ± ω̂

(δA)
m

m2Dθ

]

+
L||
4π

∑
m

∑
±

〈
1

v||

[
1

rB

∂δφmk||
∂r

]2
〉

k||

Tan−1

[
δk||v|| ± ω̂

(δφ)
m

m2Dθ

]

where ω̂(δA)
m ≡

〈
ω

(δA)
mk||

〉
k||
−mωE×B, ω̂(δφ)

m ≡
〈
ω

(δφ)
mk||

〉
k||
−mωE×B,

Dθ(−v||, ω̂(δA)
m , ω̂(δφ)

m ) = Dθ(v||, ω̂(δA)
m , ω̂(δφ)

m ),

Dθ(v||,−ω̂(δA)
m ,−ω̂(δφ)

m ) = Dθ(v||, ω̂(δA)
m , ω̂(δφ)

m ).

In order to obtain limiting cases, Tan−1x is approximated by

Tan−1x ∼





π

2
for x ≥ π

2
x for |x| ≤ π

2
−π

2
for x ≤ −π

2

By using above approximation, the velocity space integration will be done.
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2 Thermal diffusion coefficient

2.1 Cases with only magnetic fluctuations in low frequency limit ω̂
(δA)
m ∼ 0

Scale separator for magnetic fluctuations : RM

RM ≡

π

8

L||k
2

r

δk||

∑
m

〈(
δBrmk||

B

)2
〉

k||




1/2

RM ∼ displacements by diffusion

correlation length of fluctuations
, for δk|| ∼ L−1

|| , kr ∼ L−1
⊥

L⊥ : perpendicular correlation length of the fluctuations

RM ¿ 1 scale separable: quasi-linear limit

1. low amplitude limit (quasi-linear limit), RM ≤ 1

D(α)
r (v||) ∼

L||
4
|v|||

∑
m

〈(
δBrmk||

B

)2
〉

k||

Averaged (unperturbed) orbits are good approximation.

2. high amplitude limit, RM ≥ 1

D(α)
r (v||) ∼ |v|||

√√√√L||
2π

∑
m

〈(
δBrmk||

B

)2
〉

k||

δk||

k
2

r

.

Diffusive (perturbed) orbits are good approximation.
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D
(α)
r (v||) ∼

v||
vTα

2vTαδk||

πk
2

r

{ R2
M for RM ≤ 1

RM for RM ≥ 1

χ
(α)
M ∼ 4vTαδk||

π3/2k
2

r

{ R2
M for RM ≤ 1

RM for RM ≥ 1
, χ

(e)
M ∼

(
mi

me

)1/2

χ
(i)
M

2.2 Cases with only electrostatic fluctuations in low frequency limit ω̂
(δφ)
m ∼ 0

Scale separator for electrostatic fluctuations : R(α)
E

R(α)
E ≡


π

8

L||k
2

r

δk||

∑
m

〈(
δEθmk||
BvTα

)2
〉

k||




1/2

R(α)
E ∼ displacements by diffusion

correlation length of fluctuations
, for δk|| ∼ L−1

|| , kr ∼ L−1
⊥

L⊥ : perpendicular correlation length of the fluctuations

R(α)
E ¿ 1 scale separable: quasi-linear limit

1. low amplitude and/or high velocity limit, R(α)
E ≤ v||

vTα

D(α)
r (v||) ∼

L||
4|v|||

∑
m

〈(
δEθmk||

B

)2
〉

k||

Averaged (unperturbed) orbits are good approximation.
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2. high amplitude and/or low velocity limit, R(α)
E ≥ v||

vTα

D(α)
r (v||) ∼

√√√√L||
2π

∑
m

〈(
δEθmk||

B

)2
〉

k||

δk||

k
2

r

Diffusive (perturbed) orbits are good approximation.

Due to the velocity dependence, only quasi-linear treatment is not enough to obtain

the diffusion coefficient. cf. diffusion by magnetic fluctuations

D
(α)
r (v||) ∼

2vTαδk||

πk
2

r





(
R(α)

E

)2 vTα

v||
for R(α)

E ≤ v||
vTα

R(α)
E for R(α)

E ≥ v||
vTα

χ
(α)
E ∼ 4vTαδk||

π3/2k
2

r



R

(α)
E

∫ R(α)
E

0

dx(1 + x2)e−x2
+

(
R(α)

E

)2
∫ ∞

R(α)
E

dx

(
1

x
+ x

)
e−x2



 ,

R(e)
E ∼

(
mi

me

)1/2

R(i)
E ¿R(i)

E

Due to difference of the velocity dependence, χ
(α)
E has more complex nonlinear depen-

dence on fluctuating amplitudes than χ
(α)
M .
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2.3 Cases with coexisting electrostatic and magnetic fluctuations in low frequency

limit ω̂
(δA)
m , ω̂

(δφ)
m ∼ 0

(
R(α)

E

RM

)2

∼

∑
m

〈(
δEθmk||
vTαB

)2
〉

k||
∑
m

〈(
δBθrk||

B

)2
〉

k||

∼
(

c

vTα

)2

ε0

2

∑
m

〈(
δEθmk||

B

)2
〉

k||

1

2µ0

∑
m

〈(
δBθrk||

B

)2
〉

k||

=

(
c

vTα

)2

δ

δ ≡

ε0

2

∑
m

〈(
δEθmk||

B

)2
〉

k||

1

2µ0

∑
m

〈(
δBθrk||

B

)2
〉

k||

1. δ ∼ 1, R(i)
E ÀR(e)

E ÀRM

Both diffusions of electrons and ions are due to electrostatic fluctuations

2. δ ∼ me

mi
, R(i)

E ÀRM ÀR(e)
E

Diffusion of electrons (ions) is due to magnetic (electrostatic) fluctuations

3. δ ¿ me

mi
Both diffusions of electrons and ions are due to magnetic fluctuations
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3 Summary and future works

Under the most basic situations that the transport of electrons and ions by the coexisting stochastic

electrostatic and magnetic fluctuations are regarded as the normal diffusion,

1. such a simple synergetic method is developed that the diffusion processes by coex-

isting stochastic electrostatic and magnetic fluctuations are obtained in the same

framework.

2. an analytical expression of the diffusion coefficient is obtained in terms of the scale

separator.

3. properties of the thermal diffusion under coexisting electrostatic and magnetic

fluctuations are clarified.

4. in the experimental situations, χe is governed by magnetic fluctuations and χi is

governed by electrostatic fluctuations

remaining problems

1. ambipolar conditions

2. effects of the toroidicity (partition of the velocity space integration)

3. effects of the magnetic shear ί́ ′ and ωE×B shear


